Repository logo
  • English
  • ქართული
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • English
  • ქართული
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Universities
  3. Ivane Javakhishvili Tbilisi State University
  4. Independent Research Units
  5. Andrea Razmadze Institute of Mathematics
  6. Articles
  7. On Sharp Olsen’s and Trace Inequalities for Multilinear Fractional Integrals
 
  • Details
Options

On Sharp Olsen’s and Trace Inequalities for Multilinear Fractional Integrals

Journal
Potential Analysis
ISSN
0926-2601
1572-929X
Date Issued
2022-04-11
Author(s)
Meskhi, Alexander  
Andrea Razmadze Mathematical Institute  
Loukas Grafakos
Publisher
Springer Science and Business Media LLC
DOI
10.1007/s11118-022-09991-y
URI
https://openscience.ge/handle/1/8497
Abstract
We establish a sharp Olsen type inequality $ \big \| g {\mathcal {I}}_{\alpha }(f_{1}, {\dots } , f_{m}) \big \|_{{L^{q}_{r}} } \leq C \big \| g \big \|_{L^{q}_{\ell } } \prod\limits_{j=1}^{m} \big \| f_{j}\big \|_{L^{p_{j}}_{s_{j}}} $ for multilinear fractional integrals
$$\mathcal{I}_{\alpha}(\overrightarrow{f})(x)=\int\limits_{(\mathbb{R}^{n})^{m}}\frac{f_1(y_1)⋯f_m(y_m)}{(|x−y_1|+⋯+|x−y_m|)^{mn-\alpha}}d}(\overrightarrow{y}, x∈R^n,$$ $0 < \alpha < mn$, where $L_r^q, L_l^q, L_{s_j}^{p_j}, j = 1,…,m,$ are Morrey space with indices satisfying certain homogeneity conditions. This inequality is sharp because it gives necessary and sufficient condition on a weight function $V$ for which the inequality
$ \big \|{\mathcal {I}}_{\alpha }(f_{1}, {\dots } , f_{m}) \big \|_{{L^{q}_{r}}(V) } \leq C \prod\limits_{j=1}^{m} \big \| f_{j}\big \|_{L^{p_{j}}_{s_{j}}} $
holds. Morrey spaces play an important role in relation to regularity problems of solutions of partial differential equations. They describe the integrability more precisely than Lebesgue spaces. We also derive a characterization of the trace inequality
$\big \| B_{\alpha } (f_{1},f_{2})\big \|_{{L^{q}_{r}}(d\mu ) } \leq C \prod\limits_{j=1}^{2} \big \| f_{j}\big \|_{L^{p_{j}}_{s_{j}} ({\Bbb {R}}^{n}) }, $
in terms of a Borel measure μ, where Bα is the bilinear fractional integral operator given by the formula
$Bα(f_1,f_2)(x)=\int\limits_{R^n}\frac{f_1(x+t)f_2(x−t)}{|t|^{n−α}}dt,0<α<n$, Some of our results are new even in the linear case, i.e. when $m = 1$.
Subjects

Multilinear fractiona...

Olsen’s inequality

Trace inequality

Morrey spaces

Communities & Collections Research Outputs Fundings & Projects People
  • Cookie settings
  • Privacy policy
  • Contact